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1 Mathematical Definitions

In this project, highly automated driving (HAD) functions are used to control the safe
operation of FZI shuttles. To ensure the safety and reliability of the designed HAD
functions, it is integrated into Carla simulation and examined in a digital twin of the
test site. The proposed functions don’t have explicit mathematical models for
different maneuvers, it rather utilizes a modular pipeline to estimate a future
trajectory with a defined time horizon. The modular pipeline utilizes HD maps to
capture road topology information and uses a localization algorithm to identify the
shuttle position within the digital twin map. Static and dynamic obstacles are
detected and tracked with perception algorithm. The output from these algorithms is
then utilized by a planner. In the next subsections, the technical details of each
module of the HAD functions are discussed.

e HD-Maps: The driving functions utilize environment description in Lanelet
format [1,2]. Lanelet format provides a precise geometric description of road
semantics and topology in geodetic (latitude and longitude) coordinates.
Furthermore, the lanelet format can be easily annotated with traffic rules, and
it can be additionally converted back and forth between other formats such
as OpenDRIVE using [3]. Given the desired start and goal positions, a global
planner utilizes the HD-maps to find a route to goal as well as the acceptable
driving area on the road.

e Localization: In the proposed driving functions, there is two possible
sources for localization: Global navigation satellite system (GNSS) and
Simultaneous Localization and Mapping (SLAM). The SLAM algorithm is
based on Google cartographer [4] and additionally utilize semantic
information. Two concurrent stages are carried out by the SLAM algorithm. In
the first stage, submaps are created by matching of consecutive LiDAR
scans over a horizon of one second.

e Perception: This module is responsible for detecting static and dynamic
obstacles in the environment and tracking dynamic obstacles. In the
following items, different steps of the perception pipeline are illustrated:

o Preprocessing: A ground estimation algorithm is utilized to filter out
points that belongs to the ground plane. Non-ground points are
segmented and clustered using a range-image approach similar to
the one introduced in [5]. Finally, the segmented clusters are
transformed from the sensor frame to the odometry frame based on
the localization information and the vehicle motion estimation.

o Static obstacles representation: Static obstacles are rendered as a
variant of 2D occupancy grids called costmap. The costmap is
constructed based on the ground segmented points and the
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transformed clusters of static obstacles, where every cell of the
costmap indicates whether it is occupied or not.

o Detection of Dynamic Obstacles: The detection of dynamic
obstacles plays a critical role in the safe navigation of the roads and
to ensure the safety of vulnerable road users. Segmented clusters are
merged such that the clusters belonging to the same object form one
cluster and a bounding box to fitted to such clusters using L-shape
computation [6]. Furthermore, the dynamic obstacles are tracked
using a Gaussian Mixture Probability Hypothesis Density Filter
(GMPHD) [7].

e Planning: A planner is utilized to calculate comfortable and collision free
trajectory of the vehicle. Particle-Swarm-Optimization (PSO) is used in the
proposed planner as it doesn’t require gradient information allowing arbitrary
constraints and cost functions. The planner has two types of constraints:
internal and external. The internal constraints enforce physical feasibility of
trajectories by limiting the velocity and curvature between any two
consecutive poses in the trajectory. The external constraints utilize
information from perception to avoid collision with both static and dynamic
obstacles in the environment.

e Controller: The planned trajectories are converted into low level control
commands (steering, acceleration, deceleration) through a controller. A PID
controller is used to follow the reference planned trajectory with minimum
error. The controller inputs are the lateral and longitudinal errors from the
reference path and the output is the low-level control commands.
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2 Parameterization

The parameters along with their definition that were adjusted for modelling
automated driving vehicles for the present use case are the following:

Attribute/setting | Value Description

Vehicle Length 40m The dimension of the vehicle along the
longitudinal direction.

Vehicle Width 2.0m The dimension of the vehicle along the lateral
direction.
Desired Velocity | 8.5 m/s The average desired velocity present in

trajectories from the planner.

Max acceleration | 3.5 m/s? The maximum acceleration that the vehicle can
achieve under any circumstances.

Curvature 0.2 1/M The maximum curvature that can exist between
two consecutive poses in a trajectory.

Trajectory size 20 The number of sequential poses estimated by
the planner in each trajectory.

PSO Swarm size | 96 The size of the swarm initialized by the PSO
planner.
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3 Transferability

In this work, a modular driving pipeline that require sensor data (camera, lidar, etc.)
was deployed and tested on a street level simulation in Carla simulator. In the
following, we discuss the minimum set of requirements required to transfer or
integrate the driving function into other simulators.

¢ Input requirements:

o Lanelet file: This file is required for the driving pipeline to infer the
road geometry and topology such as the road boundaries, road
curvature, etc. Additionally, the GPS coordinates of the lanelet map
origin should be defined and passed to the planner.

o0 Parameters: The essential parameters for the pipeline operation are
illustrated in the previous section and without the definition of these
parameters such as the vehicle length, width, etc. Correct behaviour
of driving cannot be guaranteed.

o A transformation between the map origin and the current vehicle
poses. This transformation is crucial in localizing the vehicle in the
lanelet map.

o A cost map to infer information about the occupancy of static
obstacles as well as a list of dynamic obstacles in the environment. In
the current work, the cost map and the obstacles list are derived from
lidar sensors as discussed in section 1 — perception.

e Output requirements:

o The final output from the pipeline is an Ackermann command. To
successfully integrate the pipeline with other simulators, an adapter
that converts the Ackermann commands to actual vehicle motion in
the simulation is required.
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