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1 Mathematical Definitions

For the integration of automated driving vehicles in the microscopic simulation
environment a model is needed which approximates the real-world behaviour of the
automated driving software in the simulation environment. Since two different
simulators have been used for the Graz pilot site (SUMO, Autoware simulator), both
are described in the following.

Car-Following Model

When simulating queued vehicles, car-following models are needed to emulate the
acceleration behaviour of real vehicles. Depending on the model and the
parameters, different vehicle gaps are the result.

SUMO contains many car-following models which can be used to replicate
automated driving in a simulated environment. For the SHOW project, the Intelligent
Driver Model has been chosen for the shuttle operating at the Graz pilot site. Based
on data recorded during the pre-pilot phase, this model approximates the speed
profile best, both qualitative and quantitative.

The Intelligent Driver Model (IDM), first introduced as time-continuous model
[Treiber2000], consists of two main equations and five parameters: the desired time
headway T, the maximum acceleration amax, the desired deceleration bstandard, the
minimum gap s0 and the acceleration exponent δ. The desired gap depends on the
parameter amax, bstandard and T:
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The acceleration is determined by the ratio between the current velocity vn-1(t) and
the desired velocity v0(t) as well as the desired gap s*n-1(t) and the actual gap s(t):
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The latter ratio represents the intelligent braking strategy and assures a collision-free
execution of this model. However, this term does not allow the following vehicles to
reach the desired velocity in homogenous traffic condition and induces ever larger
gaps. Because there is only one automated shuttle in the simulation, this drawback
of this car follow model does not pose any problem.
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Figure 1: Speed profile using the default car follow model (left) in contrast to IDM (right)

All other vehicles, like the individual traffic in the shopping center as well as the
manual driven public busses, are using the default SUMO car-follow model. This
model is extremely simple and can be calculated quickly for a large fleet of vehicles.
Figure 1 compares the two models on one simulation run at the SHOW track in Graz.
Obviously, the speed profile recorded using the default model (left) looks highly
artificial while the IDM model (right) produces far more realistic speed profiles and
smoother gradients.

Autoware uses an adaptive cruise controller module which embeds maximum
velocity into the trajectory when there is a dynamic point cloud on the trajectory. The
value of maximum velocity depends on the own velocity, the velocity of the point
cloud (velocity of the vehicle ahead), and the distance to the point cloud which
correspondences with the distance to the front car (see Figure 2).

Figure 2: Adaptive Cruise Control of Autoware

The first process of this module is to estimate the velocity of the target vehicle point.
The velocity estimation uses the velocity information of dynamic objects or the travel
distance of the target vehicle point from the previous step. The dynamic object
information is primal, and the travel distance estimation is used as a backup in case
of the perception failure. If the target vehicle point is contained in the bounding box
of a dynamic object geometrically, the velocity of the dynamic object is used as the
target point velocity instead. Otherwise, the target point velocity is calculated by the
travel distance of the target point from the previous step. Note that this travel
distance based estimation fails when the target point is detected in the first time
which may happen during a cut-in situation. To improve the stability of the
estimation, the median of the calculation result for several steps is used.

If the calculated velocity is within the threshold range, it is used as the target point
velocity. Only when the estimation succeeds and the estimated velocity exceeds the
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value of obstacle_stop_velocity_thresh, the distance to the pointcloud from
self-position is calculated. For prevent chattering in the mode transition,
obstacle_velocity_thresh_to_start_acc is used for the threshold to start adaptive
cruise, and obstacle_velocity_thresh_to_stop_acc is used for the threshold to stop
adaptive cruise. When the calculated distance value exceeds the emergency
distance demergency calculated by emergency_stop parameters, target velocity to insert
is calculated:
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In this equation dmarginemergency is a minimum margin to the obstacle pointcloud,
tidelingemergency is a supposed idling time while vego is the current velocity of the own
vehicle and vobj the estimated speed of the obstacle pointcloud. Furthermore,
begoemergency is the maximum deceleration of the own vehicle while bobjemergency is the
supposed deceleration of the obstacle ahead.

The target velocity is determined to keep the distance to the obstacle pointcloud
from own vehicle at the standard distance dstandard calculated as following:
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Therefore, if the distance to the obstacle pointcloud is longer than standard
distance, the target velocity becomes higher than the current velocity, and vice
versa. For keeping the distance, a PID controller is used.

Figure 3: Autoware planner responding to VRUs

If there is a VRU detected in or near the planned trajectory, the so-called Slow Down
Planner is activated. It inserts the slow down section before the obstacle with
forward margin and backward margin. The ego vehicle keeps decelerating in the
slow down section using the following equation:
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Vtarget is the set speed for the vehicle controller which may vary between the two
parameters vmax and vmin. lld denotes to the lateral deviation between the obstacle
and the ego footprint and lvw takes the width of the ego vehicle into consideration.
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As already mentioned in the Graz pilot site description, this Autoware simulation is
primarily used for the traversal of the bus terminal where many VRUs are present.
The majority of the track is covered by SUMO, as it is much better suited to simulate
manual driven traffic in the shopping center.

Lane-Changing Model

At the Graz pilot-site no lane-changes in the usual manner are needed, because
there are only single-lane roads. However, a decision is needed at the bus terminal,
which lane through the terminal is currently available and must be chosen
consequently. For this highly specific problem, a separate algorithm had to be
developed, which is described briefly in the following section. It operates in the
Autoware simulation domain only, since it needs a Lidar point-cloud as input – either
from the simulator or from the real sensor. Based on the point cloud and the map of
the bus terminal, an occupancy grid like structure is filled with data.

In a first step the input data filtered depending on the height of the LiDAR points. In
this case, only LiDAR points are considered, which are between 0.5 and 1.5 m, thus
eliminating flickering of the ground and ignoring the structures of the building above.
Furthermore, the raw data are filtered in 2D domain, and only points near the bus
bays are considered.

Figure 4 Visualization of filtered LIDAR dataset depending on the lane section. Filtering
point cloud depending on the bus lane (different colours)

Figure 4 shows a sample view of LIDAR point clouds over a time sequence.
Depending on the lane, LiDAR points are visualized with a specific color (the first bus
lane in red, the second in green, and the third in blue). LIDAR points' change over
time (flow) has valuable information for deciding which lane to choose. The idea is to
define the probability and uncertainty of a static and dynamic object by reading the
LIDAR data. Therefore, we compute the probabilities as shown in in Figure 2.
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Figure 5 Probability matrix for defining the probabilities of having an obstacle on a lane
section for all bus lanes

Figure 5 is only valid for a timestep. It is necessary to analyze the change in
probability matrices over time. Especially for intelligent motion planning, the
prediction over time is relevant.

Figure 6 shows the filtered and projected dataset for a specific time sequence,
where a bus is driving in bus lane 3. The visual shape of a bus (surfaces and edges)
leads to typical patterns in LIDAR data. Occlusions by other road users or static
objects might hide valuable information about the movements of all road users. This
effect can be largely mitigated by including temporal evolution. Further details of this
algorithm can be found in [1].

Figure 6 Density plots projected and filtered LIDAR data. The bus lanes are presented
as black dots. The LIDAR points are presented with blue dots.

The intended usage of the presented algorithm is like the following: After picking up
new passengers at the bus terminal, the test driver has to confirm that the shuttle is
ready to start driving. During this human interaction the desired bus bay must also
be specified. The algorithm shown above simplifies and accelerates this step by
pre-selecting a reasonable bus bay.
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Sidenote: In the real world driving, an additional smart camera is used to aid this
decision process and which triggers a TOR (Take Over Request) if no bus lane is
available at all.

Gap-Acceptance Model: Yield Behaviour

Besides basic models for longitudinal and lateral movement, a traffic simulation
needs also models and algorithms to determine speed of a vehicle at intersections
and for right-of-way rules.

SUMO At most intersections, vehicles wait at the stop line at the border of the
intersection until they may cross conflicting streams of traffic. The right-of-way
model implemented in SUMO is a simplification of real world behavior: When
approaching an intersection, a vehicle at first set the information about its approach
to the intersection. After this has been done for all vehicles, the intersection decides
which vehicles are allowed to pass without braking and which vehicles have to yield.
This is done using a right-of-way matrix. This matrix describes which connections
cross each other and which one has the right of way in case of crossing
connections. This concept is illustrated in Figure 7 using an example.

Figure 7a shows an intersection which is approached by a red car on lane 2 and a
green car on lane 7. Since the paths of both vehicles intersect and both wish to
cross the intersection, a right of way computation is performed. In Figure 7b the
right-of-way matrix for this intersection is shown, emphasizing the discussed links.
The matrix cell with row i and column j defines the right of way for a vehicle on lane i
in regard to a vehicle from lane j. According to the colors (white/yellow/red) a vehicle
on lane i (ignores/has priority over/yields to) a vehicle on lane j. In the example, the
red car yields to the green car because of the red box in cell (2,7) which agrees with
the common rules of traffic for left-turning vehicles. So, we see that the vehicle at
lane 2 has to wait for the vehicle at lane 7.

(a) (b)

Figure 7: Static right of way matrix used by SUMO
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The matrix itself is static and computed during the network import/generation. Traffic
lights are modelled by removing the information about approaching the intersection
for all vehicles that run at links that have a red light.

Autoware. Unlike SUMO, where every vehicle is basically treated equally, Autoware
always views the situation from an ego perspective. When approaching an
intersection, only the ego lane is actually known; the behavior of other road users
can only be extrapolated based on a HD map and/or guessed.

Figure 8 depicts the situation when turning left at a T-crossing. The attention area in
the intersection is defined as the set of lanes that are conflicting with ego vehicle's
path and their preceding lanes. Objects that satisfy the following conditions are
considered as possible collision objects:

● center of gravity of the object is within a certain distance from the attention
lane

● posture of object is the same direction as the attention lane
● not being in the adjacent lanes of the ego vehicle
● not forced to stop by traffic light (if present)

Figure 8: Left turn on a simple T-crossing using Autoware

The following process is performed for all target objects, to determine whether the
ego vehicle can pass the intersection safely. If it is judged that the ego vehicle
cannot pass through the intersection with enough margin, a stop-line is inserted in
the path.

1. calculate the time interval that the ego vehicle is in the intersection. This time
is set as ts ~ te

2. extract the predicted path of the target object
3. detect collision between the target extracted predicted path and ego's

predicted path in the following process.
a. obtain the passing area of the ego vehicle Aego in ts ~ te
b. calculate the passing area of the target object Atarget at ts-tmargin ~

te+tmargin for all predicted, possible paths
c. check if Aego and Atarget polygons are overlapped→ collision

4. when a collision is detected, a stop-line is inserted

In a sense, it can be concluded that Autoware is much closer to human behavior
than SUMO, because the uncertainties regarding other road users are also taken
realistically into account. On the other hand, Autoware only has to work for a single
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ego vehicle, while SUMO has to make decisions for an entire fleet of vehicles in
parallel.
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2 Parameterization

The parameters along with their definition that were adjusted for modelling
automated vehicles for the present use case are listed in this chapter with their
specific value specified in Table 1. Manually driven vehicles use default parameters
for the individual vehicle class predefined in the simulation environment.

● Normal acceleration (astandart): is the normal acceleration, in m/s2, that is
used for normal, convenient driving.

● Normal deceleration (bstandart): is the normal deceleration, in m/s2, that the
vehicle uses under normal conditions for convenient stopping.

● Maximum acceleration (amax): is the maximum acceleration, in m/s2, that the
vehicle can achieve under any circumstances

● Maximum deceleration (bemergency): is the most abrupt braking, in m/s2 that
the vehicle can apply in emergency situations.

● Minimum gap (s0): is the space, in m, between the rear bumper of a vehicle
and the front bumper of the following vehicle.

● Desired Headway (T): the minimum allowed time, in s, to the vehicle driving
in front

● Acceleration exponent (δ): specifies how the acceleration decreases when
approaching the desired velocity

● Obstacle stop velocity thresh: threshold, in m/s, for velocity of obstacle
ahead to insert a stop line

● Obstacle velocity thresh to start acc: start adaptive cruise control when
the velocity, in m/s, of the forward obstacle exceeds this value

● Obstacle velocity thresh to stop acc: stop adaptive cruise control when the
velocity, in m/s, of the forward obstacle falls below this value

● Standard stop distance (dmarginstandard):  is the normal margin, in m, to the
obstacle pointcloud. Below this threshold convenient deceleration begins

● Minimum stop distance (dmarginemergency):  is the absolute minimum margin, in
m, to the obstacle pointcloud. Below this threshold an emergency stop is
initiated.

● Emergency stop idling time (tidelingemergency): is the supposed idling time, in s,
to start an emergency stop

● Obstacle emergency stop acceleration (bobjemergency): assumed maximum
deceleration, in m/s², of vehicle ahead during emergency stop

● Crossing safety margin (tmargin): time safety reserve, in s, when driving
through an intersection

● Width of the ego footprint (lvw): ego vehicle width, in m
● Lateral deviation (lld) between the obstacle and the ego footprint, in m
● Lateral margin (lmargin) for passing a VRU, in m
● Minimum slowdown velocity (vmin): the minimum velocity, in m/s, within a

slowdown section because of a VRU
● Maximum slowdown velocity (vmax): the maximim velocity, in m/s, within a

slowdown section because of a VRU
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Domain Parameter Abbrev. Value

ACC

normal acceleration astandart 0.7 m/s²

normal deceleration bstandart 0.7 m/s²

maximum acceleration amax 1.8 m/s²

maximum deceleration bemergency -2.4 m/s²

minimum gap s0 3 m

desired Headway T 1.1 s

acceleration exponent δ 4.0

obstacle stop velocity thresh 0.5 m/s

obstacle velocity thresh to start acc 1.5 s

obstacle velocity thresh to stop acc 1.0 s

standard stop distance dmarginstandard 4.0 m

minimum stop distance dmarginemergency 4.0 m

emergency stop idling time tidelingemergency 0.5 s

obstacle emergency stop acceleration bobjemergency -5 m/s²

Crossing crossing safety margin tmargin 1.2 s

VRUs

width of the ego footprint lvw 1.9 m

lateral deviation lld 1.0 m

lateral margin lmargin 1.0 m

minimum slowdown velocity vmin 0.28 m/s

maximum slowdown velocity vmax 1.38 m/s

Table 1: Parameters used for both, SUMO and Autoware Sim

The parameters in the table above do not necessarily represent the full capabilities
of the actual automated vehicle. They are rather a compromise, which enables a
pleasant driving experience and minimizes stress on the chassis. In real-world
driving, the safety driver must intervene in dangerous situations. In our approach,
only the test driver is allowed to utilize the full driving dynamics during emergency
situations.

The idle time is the estimated average time that elapses between the detection of an
object by the sensor system and the activation of the brakes. This includes data
pre-processing, object detection and trajectory planning. In contrast, an average
human driver is generally assumed to have a reaction time of 1 second.
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3 Transferability

Since the Graz Pilot Site is very special in its configuration (passage of bus terminal,
usage of restricted bus lanes, interaction with tramway), we cannot see the point of
scaling up the simulations made there to the entire city of Graz or replicating them in
this exact same way at another location.

For the present use case only microscopic simulations were conducted. Therefore,
the application of an up-scaling methodology is necessary in order to conduct any
transferability analysis of the results or any generalization with some degree of
success. These types of methodologies are described in the following.

Up-scaling from micro to macro simulation using PCUs

A methodology of up-scaling automated driving simulation outputs, was conducted
by Tympakianaki et al. (2022) [6] and used in the LEVITATE project (LEVITATE EU,
2022 [7]). In this methodology, the impacts of CAVs were assessed with respect to
network performance. In [2] the considered steps of the up-scaling method are
illustrated.
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Figure 2: Aimsun upscaling approach by Tympakianaki et al. (2022) [6].

The considered steps of the up-scaling method are explained:
1. Firstly, the network capacity should be derived through the microscopic

simulation. By network capacity we define the maximum number of vehicles
exiting the simulation network between simulation time intervals (e.g. 2 minutes).
A suitable and easily transferable approach for observing the network capacities
is through the Macroscopic Fundamental Diagram (MFD). The MFD is the basis
of traffic flow theory and demonstrates a functional relationship between the
network characteristics, i.e., traffic flow (throughput), vehicle density and speed.
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2. The second step includes a statistical analysis that identifies the effects on the
Passenger Car Units (PCUs)1 as a relative change of capacities. Based on the
microscopic simulation results, a fitted function (i.e. linear, polynomial, etc.) can
be used to derive the PCUs given the capacities obtained from the network
MFD. The PCUs are derived by the capacity ratio of conventional vehicles (CV)
and AVs using the following formula:

𝑃𝐶𝑈
𝐴𝑉

 =  𝑃𝐶𝑈
𝐶𝑉

*
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𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
𝐴𝑉

3. The last step is to provide the PCU relationship as an input to the Volume Delay
Functions (VDFs) of macroscopic models to forecast the potential macroscopic
implications on the network performance. The VDFs are functions that model
travel time among different parameters such as volume and capacity. For this
reason, the macroscopic models apply VDFs in order for travel time values to be
calculated. VDFs represent the relationship between flows and delays of each
road segment. A function defining travel time was developed by US Bureau
Public Roads (1964) [8] and is the following:

𝑡 =  𝑡
𝑓𝑓

(1 + 𝑎 ( 𝑣
𝑐 )

𝑏
)

where tff is the free-flow travel time, v/c is the volume-to-capacity ratio, and a, b
two adjustable parameters.

This methodological approach is essential as the small-scale simulated networks
would be up-scaled to city-level networks. In addition, the transferability of the
simulation outputs to other networks or/and regions would be applicable. If a
microscopic simulation model of a city is not available, the generalized PCU
functional relationship estimated from a different network could be used as input
into a travel demand model to forecast the macroscopic impacts. Furthermore, more
robust simulations with validated automated driving parameters (limiting the
assumptions related to the used parameters) could be executed and consequently,
more concrete results could be extracted.

This methodology requires the combination of micro with macro simulations. The
main benefit of this methodology is that the results of microscopic simulation can be
evaluated if are significantly similar to those derived from macroscopic simulation
(essentially to be up-scaled) in order to see if they can be generalized as well as are
transferable to different regions or cities. Therefore, the fundamental expected
outcomes by applying this methodology are that up-scaled to city-level network
results can be derived and this does not restrain the results only to micro and macro
as well as this method gives the ability to the simulation outputs to be transferable to
other networks/regions.

Up-scaling from micro to macro simulation using extensions of driver models and
additional MFD specifications

1 Passenger Car Unit (PCU) measures the impact of a transport mode (passenger cars, heavy
vehicles, buses, etc.), as a function of vehicle dimensions and operating capabilities, on the
traffic flow efficiency compared to a standard unit of passenger car. Hence, a PCU factor of
1 is used as the unit for conventional cars.
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Building upon the PCU method and recent advances in the literature with regards to
traffic flow theory and AVs, the MFD could be further exploited for upscaling
processes. One alternative is proposed by Shi and Li (2021) [9], where an MFD for
AV traffic flows is proposed along with macroscopic and microscopic measurement
proposals. For example, using vehicle travel time and distance travelled inside a
simulation area, an MFD can be created and up-scaled in the macro scale, in order
to be fitted into a macroscopic simulation. Furthermore, recently developed models
such as the cell transmission model (CTM) by Adacher and Tiriolo, (2018) [10],
headway modelling as described in Li and Chen, (2017) [11] and the Flexible Traffic
Stream Model (FTSM) by Zheng et al. (2017) [12], that have been shown to be easily
transferrable from the micro to the macro scale could be used to obtain MFDs using
the methodology described in Lu et al., (2020) [13]. In Lu et al., (2020) [13], an MFD
is drawn based on measurements from SUMO inputs and a macroscopic
speed-density function is obtained through a Generalised Additive Model (GAM)
regression for specific AV penetration rates.

As it can be understood, apart from network capacity and the PCU method, even
with limited AV trajectories (as in Shi and Li, 2021 [9]) or with the exploitation of
headways (Zheng et al., 2017 [12]) and speeds of vehicles (Lu et al. 2020 [13]) the
transferability of microscopic simulation outputs can be achieved through the
construction of MFDs to the macroscopic level and further impact assessment
results can be obtained.
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