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1 Mathematical Definitions

To integrate automated driving vehicles in the microscopic simulation environment of
Aimsun software, several parameters of the implemented in the software driving
models were adjusted. Information regarding the driving models are follow based on
the Aimsun Next User’s Manual (22.0.1) [1] focusing mainly on the parameters that
were adjusted for modelling automated driving vehicles.

Car-Following Model

The Aimsun software incorporates the Gipps car-following model, originally
formulated by Gipps (1981) [2], which analyzes the behavior and reaction of the
following vehicle in relation to the actions of the preceding vehicle. This model
considers specific parameters that are not universally applicable but rather depend
on local factors such as the driver's characteristics (e.g. acceptance of speed limits),
section geometry (e.g. speed limits on the section and turns), and the influence of
vehicles in neighboring lanes, among others.

According to this model, the desired speed of vehicle (n) in section (s) is(𝑉*)
determined as follows:

𝑉* 𝑛,  𝑠( ) = 𝑚𝑖𝑛⁡(𝑆
𝑙𝑖𝑚

𝑠( ) × θ 𝑛( ),  𝑣
𝑚𝑎𝑥

𝑛( ))

where is the maximum desired speed of the vehicle n, is the speed limit𝑣
𝑚𝑎𝑥

𝑛( ) θ 𝑛( )

acceptance of the vehicle n, is the speed limit of the section s.𝑆
𝑙𝑖𝑚

𝑠( )

In addition, this model comprises two elements: acceleration and deceleration. The
acceleration component reflects a vehicle's intent to reach a specific desired speed,
whereas the deceleration component replicates the constraints imposed by the
preceding vehicle when attempting to travel at the desired speed. The maximum
acceleration speed ) that a vehicle (n) can attain within a given time period(𝑉

𝑎

denoted as (t, t+T) is expressed as follows:

𝑉
𝑎

𝑛,  𝑡 + 𝑇( ) = 𝑉 𝑛,  𝑡( ) + 2. 5𝑎 𝑛( )𝑇(1 −  𝑉 𝑛, 𝑡( )

𝑉* 𝑛( )
) 0. 025 +  𝑉 𝑛, 𝑡( )

𝑉* 𝑛( )

where is the speed of vehicle n at time t, is the maximum acceleration𝑉 𝑛,  𝑡( ) 𝑎 𝑛( )
of vehicle n, is the desired speed of vehicle n and is the reaction time of the𝑉* 𝑛( ) 𝑇
considered vehicle fleet.

Simultaneously, the maximum speed ) that the vehicle (n) can achieve within the (𝑉
𝑑

same time interval (t, t+T), taking into account its individual characteristics and the
constraints imposed by the presence of the preceding vehicle (vehicle n-1), can be
defined as follows:

𝑉
𝑑

𝑛,  𝑡 + 𝑇( ) = 𝑑 𝑛( )𝑇 + 𝑑 𝑛( )2𝑇2 − 𝑑 𝑛( )[2 𝑥 𝑛 − 1,  𝑡( ) − 𝑠 𝑛 − 1( ) − 𝑥 𝑛,  𝑡( ){ } − 𝑉 𝑛,  𝑡( )𝑇 −  𝑉 𝑛−1, 𝑡( )2

𝑑' 𝑛−1( )

where is the normal deceleration for vehicle n, is the position of vehicle𝑑 𝑛( ) 𝑥 𝑛,  𝑡( )
n at time t, is the position of the preceding vehicle n-1 at time t,𝑥 𝑛 − 1,  𝑡( )
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is the effective length of vehicle n-1 and is the normal𝑠 𝑛 − 1( ) 𝑑' 𝑛 − 1( )
deceleration for vehicle n-1.

The speed (V) for vehicle n within the time interval (t, t+dt) is determined as the
minimum value between these two speeds:

𝑉 𝑛,  𝑡 + 𝑇( ) = 𝑚𝑖𝑛⁡{𝑉
𝑎

𝑛,  𝑡 + 𝑇( ),  𝑉
𝑑

𝑛,  𝑡 + 𝑇( )}

The position of the vehicle n within the current lane is recalculated by integrating the
speed. The integration process for the acceleration and deceleration phases
employs distinct methods. Specifically, the acceleration phase is integrated using
the rectangle method, which can be expressed by the following equation:

𝑥(𝑛,  𝑡 + 𝑇) =  𝑥(𝑛,  𝑡) +  𝑉 𝑛,  𝑡 + 𝑇( )𝑇

while the integration of the deceleration phase employs the trapezoid method, which
is characterized by the following equation:

𝑥(𝑛,  𝑡 + 𝑇) =  𝑥(𝑛,  𝑡) + 0. 5( 𝑉 𝑛,  𝑡( ) + 𝑉 𝑛,  𝑡 + 𝑇( ))𝑇

Lane-Changing Model

The lane-changing model integrated into the Aimsun software builds upon the Gipps
lane-changing model [3], encompassing additional features and functionalities. Lane
changes are represented as a decision-making process, considering factors such as
the necessity of changing lanes (e.g. for turn maneuvers as determined by the
route), the desirability of the lane change (e.g. to attain the desired speed when the
leading vehicle is slower), and the feasibility of the lane change based on the
vehicle's position in the road network, lane geometry, and surrounding vehicles.

Lane-Changing zone distance calculation

Lane-changing zones are defined by two parameters: look-ahead and critical
look-ahead. The look-ahead represents the distance upstream from the vehicle's
current position to the point where it becomes aware of its target lanes. On the other
hand, the critical look-ahead corresponds to the distance upstream to the starting
point of the lane change. When these parameters are specified in terms of time, the
conversion to physical distance is computed as follows:

𝐷
𝑚

= 𝐷
𝑠 

*  𝑆
𝑙𝑖𝑚𝑖𝑡

(𝑠)

where is the distance in meters, is the distance in seconds and is the𝐷
𝑚

𝐷
𝑠 

𝑆
𝑙𝑖𝑚𝑖𝑡

(𝑠)

speed limit of the section s.

Overtaking Manoeuvre

In the Aimsun software, an overtaking maneuver occurs when a vehicle, positioned
within its set of permissible lanes, changes lanes to surpass another vehicle. To
regulate and influence the frequency of overtaking, two parameters are employed:

● Overtake Speed Threshold is the percentage of the desired speed of a
vehicle below which the vehicle might decide to overtake. This means that
whenever a vehicle is constrained to drive slower than Overtake Speed
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Threshold % of its desired speed, it will try to overtake. The default value is
90%.

● Lane Recovery Speed Threshold is the percentage of the desired speed of a
vehicle above which a vehicle will decide to get back into the adjacent slower
lane. The default value is 95%.

Gap-Acceptance Model: Yield Behaviour

The Aimsun simulation software also incorporates a Gap-Acceptance model to
simulate yielding behavior. This model determines whether a vehicle approaching an
intersection can proceed or must wait based on the presence of other vehicles with
higher priority at the junction. It considers factors such as the distances between
vehicles and a hypothetical collision point, their speeds, and acceleration rates.
Using this information, the model calculates the time required for vehicles to clear
the intersection and produces a decision that also incorporates the level of risk for
each driver.

When determining when a vehicle can move at a priority junction in the context of
gap acceptance calculations, the “safety margin” is established in the road type turn
related parameters. This safety margin can be adjusted to account for specific road
geometry and can be further adjusted based on the vehicle type. This vehicle type
parameter serves as a multiplier, within a truncated normal range, to modify the turn
safety margin values. In addition, the behavior of the gap-acceptance model is
influenced by several other vehicle parameters, including turn speed, acceleration
rate, desired speed, and speed limit acceptance.

The gap required for executing a maneuver is determined by the duration of waiting
for a suitable gap to appear in the opposing flows. The initial value is MaximumGap;
the final value is MinimumGap. After waiting for GapReductionStartTime
* MaximumGap seconds, the gap is progressively reduced, reaching the minimum
gap value after GapReductionEndTime * MaximumGap seconds as shown in following
figure (Figure 1).

Figure 1: Maximum Yield Time (Source: Aimsun Next User’s Manual [1]).
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2 Parameterization

The parameters along with their definition that were adjusted for modelling
automated driving vehicles for the present use case are the following:

● Maximum acceleration: is the maximum acceleration, in m/s2, that the
vehicle can achieve under any circumstances.

● Normal deceleration: is the maximum deceleration, in m/s2, that the vehicle
can use under normal conditions.

● Maximum deceleration: is the most abrupt braking, in m/s2 that a vehicle
can apply under special circumstances, such as emergency braking for e.g.
in front of a traffic light.

● Clearance: is the space, in m, between the rear bumper of a vehicle and the
front bumper of the following vehicle.

● Overtake speed threshold: is the percentage of the desired speed of a
vehicle below which the vehicle might decide to overtake. This means that
whenever a vehicle is constrained to drive slower than Overtake Speed
Threshold % of its desired speed, it will try to overtake.

● Look ahead distance factor: is the upstream distance, to the point where
the vehicle is aware of its target lanes, expressed as a factor.

● Safety margin: is a factor which determines when a vehicle can move at a
priority junction.

● Reaction time: is the time, in seconds, it takes a driver to react to speed
changes in the preceding vehicle.

The parameter values for human-driven vehicles as well as automated driving
vehicles are presented in the following table (Table 1).

Table 1: Microsimulation CAV parameters (Source: Mourtakos et al. (2021) [4]).

Factors Human-driven
vehicle

CAV

Max. acceleration

Mean 5.0 3.5
Min 3.0 2.5
Dev 0.2 0.1
Max 7.0 4.5

Normal deceleration

Mean 3.4 3.0
Min 2.4 2.5
Dev 0.25 0.13
Max 4.4 3.5

Max. deceleration

Mean 5.0 9.0
Min 4.0 8.5
Dev 0.5 0.25
Max 6.0 9.5

Clearance

Mean 1.0 1.0
Min 0.5 0.8
Dev 0.3 0.1
Max 1.5 1.2

Lane-chan
ging

Overtake speed threshold 90% 85%

Look ahead distance factor
Min 0.8 1.0
Max 1.2 1.25

Safety margin
Min 1.0 0.75
Max 1.0 1.0
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Reaction time in car following (sec) 0.8 0.4

As shown in the above Table, acceleration and deceleration of CAVs were selected
to be slower than human-driven vehicles based on a study conducted by Karjanto et
al. (2016), in order for in-vehicle activities (apart from driving) to be enabled for the
users. Moreover, the “Look ahead distance” parameter, also known as “Distance
zone factor” was also considered to be different between conventional vehicles and
CAVs, because this parameter emulates connectivity in the sense that CAVs will
have better knowledge of junctions and turnings. Therefore, it was considered that
the modelled CAVs change lanes earlier than human-driven vehicles.

The “Reaction time” parameter is the parameter that concerns the reaction time in
car-following and, along with sensitivity factor, affects time headway. According to
Eilbert et al. (2019), Adaptive Cruise Control (ACC) applications seem to be bimodal,
featuring either a gap setting of 1.1 seconds to eliminate cut-in vehicles or a 1.5
seconds gap likely due to not trusting the ACC system to be able to stop timely. For
these reasons, ACC driving appears to have a higher average time gap than manual
driving. Therefore, CAVs presented higher reaction time values compared to
conventional vehicles. All the above vehicle parameters of Table 1 were presented in
a recent study by Chaudhry et al. (2022) [5] and were based on a comprehensive
literature review conducted within the LEVITATE project.
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3 Transferability

For the present use case only microscopic simulations were conducted. Therefore,
the application of an up-scaling methodology is necessary in order to conduct any
transferability analysis of the results or any generalization with some degree of
success. These types of methodologies are described in the following.

Up-scaling from micro to macro simulation using PCUs

A methodology of up-scaling automated driving simulation outputs, was conducted
by Tympakianaki et al. (2022) [6] and used in the LEVITATE project (LEVITATE EU,
2022 [7]). In this methodology, the impacts of CAVs were assessed with respect to
network performance. In Figure 2, the considered steps of the up-scaling method
are illustrated.
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Figure 2: Aimsun upscaling approach by Tympakianaki et al. (2022) [6].

The considered steps of the up-scaling method are explained:
1. Firstly, the network capacity should be derived through the microscopic

simulation. By network capacity we define the maximum number of vehicles
exiting the simulation network between simulation time intervals (e.g. 2 minutes).
A suitable and easily transferable approach for observing the network capacities
is through the Macroscopic Fundamental Diagram (MFD). The MFD is the basis
of traffic flow theory and demonstrates a functional relationship between the
network characteristics, i.e., traffic flow (throughput), vehicle density and speed.

2. The second step includes a statistical analysis that identifies the effects on the
Passenger Car Units (PCUs)1 as a relative change of capacities. Based on the
microscopic simulation results, a fitted function (i.e. linear, polynomial, etc.) can
be used to derive the PCUs given the capacities obtained from the network
MFD. The PCUs are derived by the capacity ratio of conventional vehicles (CV)
and AVs using the following formula:

𝑃𝐶𝑈
𝐴𝑉

 =  𝑃𝐶𝑈
𝐶𝑉

*
𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝐶𝑉

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
𝐴𝑉

3. The last step is to provide the PCU relationship as an input to the Volume Delay
Functions (VDFs) of macroscopic models to forecast the potential macroscopic
implications on the network performance. The VDFs are functions that model
travel time among different parameters such as volume and capacity. For this
reason, the macroscopic models apply VDFs in order for travel time values to be
calculated. VDFs represent the relationship between flows and delays of each
road segment. A function defining travel time was developed by US Bureau
Public Roads (1964) [8] and is the following:

𝑡 =  𝑡
𝑓𝑓

(1 + 𝑎 ( 𝑣
𝑐 )

𝑏
)

where tff is the free-flow travel time, v/c is the volume-to-capacity ratio, and a, b
two adjustable parameters.

This methodological approach is essential as the small-scale simulated networks
would be up-scaled to city-level networks. In addition, the transferability of the
simulation outputs to other networks or/and regions would be applicable. If a
microscopic simulation model of a city is not available, the generalized PCU
functional relationship estimated from a different network could be used as input
into a travel demand model to forecast the macroscopic impacts. Furthermore, more
robust simulations with validated automated driving parameters (limiting the
assumptions related to the used parameters) could be executed and consequently,
more concrete results could be extracted.

1 Passenger Car Unit (PCU) measures the impact of a transport mode (passenger cars, heavy
vehicles, buses, etc.), as a function of vehicle dimensions and operating capabilities, on the
traffic flow efficiency compared to a standard unit of passenger car. Hence, a PCU factor of
1 is used as the unit for conventional cars.
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This methodology requires the combination of micro with macro simulations. The
main benefit of this methodology is that the results of microscopic simulation can be
evaluated if are significantly similar to those derived from macroscopic simulation
(essentially to be up-scaled) in order to see if they can be generalized as well as are
transferable to different regions or cities. Therefore, the fundamental expected
outcomes by applying this methodology are that up-scaled to city-level network
results can be derived and this does not restrain the results only to micro and macro
as well as this method gives the ability to the simulation outputs to be transferable to
other networks/regions.

Up-scaling from micro to macro simulation using extensions of driver models and
additional MFD specifications

Building upon the PCU method and recent advances in the literature with regards to
traffic flow theory and AVs, the MFD could be further exploited for upscaling
processes. One alternative is proposed by Shi and Li (2021) [9], where an MFD for
AV traffic flows is proposed along with macroscopic and microscopic measurement
proposals. For example, using vehicle travel time and distance travelled inside a
simulation area, an MFD can be created and up-scaled in the macro scale, in order
to be fitted into a macroscopic simulation. Furthermore, recently developed models
such as the cell transmission model (CTM) by Adacher and Tiriolo, (2018) [10],
headway modelling as described in Li and Chen, (2017) [11] and the Flexible Traffic
Stream Model (FTSM) by Zheng et al. (2017) [12], that have been shown to be easily
transferrable from the micro to the macro scale could be used to obtain MFDs using
the methodology described in Lu et al., (2020) [13]. In Lu et al., (2020) [13], an MFD
is drawn based on measurements from SUMO inputs and a macroscopic
speed-density function is obtained through a Generalised Additive Model (GAM)
regression for specific AV penetration rates.

As it can be understood, apart from network capacity and the PCU method, even
with limited AV trajectories (as in Shi and Li, 2021 [9]) or with the exploitation of
headways (Zheng et al., 2017 [12]) and speeds of vehicles (Lu et al. 2020 [13]) the
transferability of microscopic simulation outputs can be achieved through the
construction of MFDs to the macroscopic level and further impact assessment
results can be obtained.
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