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1 Mathematical Definitions

The behavior of the automated shuttles in the microscopic traffic simulation model
of the Trikala pilot site was dictated by an Adaptive Cruise Control (ACC) model that
handled car-following episodes and a Transition of Control (ToC) model that handled
control transitions between manual and automated driving modes. Comprehensive
descriptions of the latter models along with their corresponding mathematical
formulations are provided below.

1.1 Adaptive Cruise Control (ACC) Model

The ACC driving model is based on [1], [2], [3], [4], [5], whereby the developed
control law in the ACC control algorithm is explicitly divided into three modes based
on three different motion purposes: (i) speed (or cruising) control, (ii) gap-closing
control, and (iii) gap control. More specifically, the speed control mode is designed
to maintain the chosen desired speed by the driver, the gap control mode aims to
maintain a constant time gap between the controlled vehicle and its predecessor,
while the gap-closing controller enables the smooth transition from speed control
mode to gap control mode. In addition, TransAID has introduced a fourth mode (i.e.
collision avoidance mode) to the latter controller that prevents rear-end collisions
when safety critical conditions prevail. In the following text we present the basic
definitions and equations for these four ACC control modes.

Speed Control Mode

The feedback control law in speed mode is activated when there are no preceding
vehicles in the range covered by the sensors, or preceding vehicles exist in a
spacing larger of [1], [5]. This mode aims to eliminate the deviation between120 𝑚
the vehicle speed and the desired speed and is given as:
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where represents the acceleration recommended by the speed control mode𝑎
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indicate the desired cruising speed and the speed of the i-th vehicle at the current
time step , respectively; is the control gain determining the rate of speed𝑘 𝑘
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deviation for acceleration. Typical values for this gain range between 0. 3 −  0. 4 𝑠−1

according to [5]; in this study we select .0. 4 𝑠−1

Gap Control Mode

When the gap control mode is activated, the acceleration in the next time step
is modelled as a second-order transfer function based on the gap and speed𝑘 +  1

deviations with respect to the preceding vehicle; it is defined as:
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in which is the gap deviation of the i-th consecutive vehicle at the current time𝑒
𝑖,𝑘

step , and is the current speed of the preceding vehicle (index refers to𝑘 𝑣
𝑖−1,𝑘

𝑖 −  1
the leader of vehicle ); and are the control gains on both the positioning and𝑖 𝑘

2
𝑘

3
speed deviations, respectively. The proposed optimal values for the gains are

and [9]. The gap control mode is activated when the𝑘
2
 =  0. 23 𝑠−2 𝑘

3
 =  0. 07 𝑠−1

gap and speed deviations are concurrently smaller than and0. 2 𝑚 0. 1 𝑚/𝑠
respectively [5].

Moreover, in this study, and following from [2], [3], [4], the gap deviation of the i-th
consecutive vehicle is defined as:(𝑒
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According to Equation (3), the gap deviation is calculated by the current position of
the preceding vehicle , the current position of the subject vehicle , the𝑥

𝑖−1,𝑘
𝑥

𝑖,𝑘
current speed of the subject vehicle and the desired time gap of the ACC𝑣

𝑖,𝑘
𝑡

𝑑
controller.

Gap-closing Control Mode

The initial ACC car-following models by [3] considered the gap-closing controller,
but the ACC longitudinal vehicle response under this mode was not modelled in their
study. This shortcoming was overcome in [5], where the gap-closing controller was
derived by tuning the parameters of the existing gap controller. The gap-closing
control mode is triggered when the spacing to the preceding vehicle is smaller than

, and the control gains of Equation (2) are set as and100 𝑚 𝑘
2
 =  0. 04 𝑠−2

. If the spacing is between and , the controlled vehicle𝑘
3
 =  0. 8 𝑠−1 100 𝑚 120 𝑚

retains the previous control strategy to provide hysteresis in the control loop and
perform a smooth transfer between the two strategies [1], [5].

Collision Avoidance Mode

The collision avoidance mode was introduced into the ACC car-following model to
prevent rear-end collisions occurring during simulations. These may be due to safety
critical conditions, i.e. low time-to-collision (TTC) values, or a follower’s speed
significantly higher than its leader’s. The collision avoidance controller was derived
by tuning the parameters of the existing gap controller. It is triggered when the
spacing to the preceding vehicle is smaller than , the gap deviation is100 𝑚
negative, and the speed deviation is smaller than . In this case, the control0. 1 𝑚/𝑠
gains of Equation (2) are set as and to ensure that ACC𝑘

2
 =  0. 8 𝑠−2 𝑘

3
 =  0. 23 𝑠−1

vehicles can break hard enough to avoid an imminent collision. Similar to the
gap-closing control mode, the controlled vehicle retains the previous control
strategy to provide hysteresis in the control loop and perform a smooth transfer
between the two strategies [1], [5] if the spacing is between and .100 𝑚 120 𝑚
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1.2 Transition of Control (ToC) Model

ToCs in (C)AVs can be classified according to several characteristics [6], [7]. The
class of passive, downward transitions is likely to be the most critical as these pose
high demands on a potentially distracted human driver in terms of time constraints
for the take-over.

For simulative studies on the impact of cumulative occurrences of ToCs in TAs,
simulation models need to be developed, being capable of reproducing the
important processes during such events. Figure 1 shows a schematic representation
of the presumed phases during a downward ToC [8].

Figure 1: Timeline of a downward transition

From a modelling perspective it is clear that the time point of switching between
automated and manual driving mode requires a careful handling as the model
features a discontinuity here. For the implementation, the car-following and
lane-change models of the simulated driver-vehicle-unit (DVU) are substituted at this
moment, and it must be ensured that this does not introduce unnaturally high brake
rates or similar artefacts.

For the assessment of the impacts of ToCs on traffic safety and efficiency, the
choice of parameters of the automated and manual mode is crucial. Especially the
phase of reduced driving performance may be conjectured to imply an adverse
effect due to irregular or erroneous behaviour, which disturbs a smooth traffic flow.
Considerable evidence has been presented to claim that measures of driving
performance may drop when a take-over is requested with an insufficient lead time
[9], [10], [6]. Mostly, the available studies are concerned with Level 3 automation and
urgency ToCs and aim at estimating the lead time that permits drivers to operate
their vehicle safely after performing the ToC. In general, this lead time was found to
be significantly longer if the driver disengages from the driving process, i.e., more
distracted or out of the loop for a longer period of time [10], [11], [12]. This
observation is especially important for the case of highly automated vehicles since
the driver is likely to engage in other activities, which distract further from the driving
process. Indicators, which were used to quantify the driving performance and are
directly related to the driving process, are for instance

[9], [13], lane keeping [13], [14], braking precision /𝑠𝑝𝑒𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 / 𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 𝑖𝑛𝑝𝑢𝑡
overbraking [11], [13], [15], and the type of evasive manoeuvre applied in case of an
urgent ToC [9]. But also, indirect indicators of attentiveness and situation awareness
were studied, e.g. the driver’s ability to reconstruct a depicted situation after looking
at it for different amounts of time [16], and the frequency and type of glances and
eye movements [17], [18], [19].
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Figure 2 shows a diagram for a model capturing the essential phases and transition
during the ToC process. Both driving modes, automated and manual, have a state of
normal operation, which corresponds to a normal driver performance for the manual
mode and undisrupted functioning for the automated mode. After a take-over
request (ToR) has been issued, the model for automated control enters the “Prepare
ToC” state, where it resides until the driver responds to the ToR, or until the lead
time has elapsed, in case of which it initiates a Minimum Risk Manoeuvre (MRM).
The entry point to the manual mode is the “Post-ToC Recovery” period during which
a decreased driver performance is assumed.

Figure 2: State machine for a ToC process model

Parametrisation of the ToC Model

The ToR can be communicated to the driver with a relatively long lead time until the
ToC is required to be executed. This means, that the transitions to be modelled are
not urgent but planned. Unfortunately, the research body on planned ToCs is rather
scarce in comparison to urgent ToCs [6], which received the greatest attention so far
because they are likely to lead to the most critical situations.

For the lead time a value of 10 seconds is fixed, which has to be interpreted in
conjunction with the distribution of driver response times. This distribution was
modified between the different parameter schemes to affect the probability of an
MRM being initiated, which presumably represents the largest impact of ToC
processes on the traffic flow. Figure 3 shows the cumulative distribution functions
for the different parameter schemes. These are truncated normal distributions with a
mean of 7 seconds and variances of 2.1 (minor impact), 2.5 (moderate impact), and
3.0 (major impact). This results in the following probabilities for MRMs:

● Minor impact: P(MRM) = ~7.7%,
● Moderate impact: P(MRM) = ~11.6%
● Major impact: P(MRM) = ~16.2%

Note that a simulated Driver-Vehicle Unit (DVU) is assumed to switch immediately to
the manual mode after the response time has elapsed, even if this requires an abort
of an ongoing MRM. Therefore, not only the occurrence of an MRM is an important
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quantity but also its duration, which is the difference of the response time and the
lead time. Thus, the most MRMs occurring in the simulations are of short duration (

lie within and within for all parameter schemes)> 85 % 0 − 3 𝑠 > 97. 5 % 0 − 5 𝑠
and are interrupted before the vehicle comes to a full stop.

Other important parameters are the initial awareness distribution affecting the driver
state at the moment of performing the ToC, and the various coefficients for the
driver state model error and perception mechanisms.

Figure 3: Cumulative distribution functions of the driver response time for the different
parameter schemes. For the different parameter schemes, the intersections of the
corresponding dashed lines with the ordinate indicate the probabilities that an AV,

which requires a ToC, successfully performs it before initiating an MRM.

Modelling of a Decreased Post-ToC Driver Performance

The observations of increasing performance measures with increasing take over
time can be attributed to an underlying recovery process of the driver’s awareness
and the mental capacity available for the driving process [16], [20], [21], [22].

As this recovery process can be assumed to exhibit a high variability between
different drivers and situations, it seems unavoidable that the level of
disengagement will be elevated at least for some drivers of automated vehicles after
the ToC, even if the granted lead time assures that a good performance can be
expected after the ToC for most events.

We capture this assumption by randomly assigning a value for an
to the model of each DVU that is performing a ToC in the𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑤𝑎𝑟𝑒𝑛𝑒𝑠𝑠 𝐴

0
simulations. The variable is sampled from a distribution on the interval ,𝐴

0
[𝐴

𝑚𝑖𝑛
, 1]

where a value of corresponds to full awareness, i.e. normal driving𝐴
0

= 1
performance, while is the minimal level for the initial awareness. Further an𝐴

𝑚𝑖𝑛
> 0 
is given to the DVU controlling the post-ToC evolution of𝑎𝑤𝑎𝑟𝑒𝑛𝑒𝑠𝑠 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒 𝑟

its awareness according to , until the awareness has completely𝐴(𝑡) 𝐴̇(𝑡) = 𝑟
recovered i.e. .𝐴 𝑡( ) = 1
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For the period, where the awareness is reduced, i.e., , an increased error𝐴 𝑡( ) < 1
rate is assumed for the leading DVU. Although errors may enter the driving process
at several stages (Figure 4), the modelling is restricted to one source, which is
chosen to be the accuracy of the driver’s perceptions, i.e. the perception errors. This
simplification is followed since it is not obvious how a more detailed error
mechanism would to lead to a significant improvement of the model with respect to
the modelling purposes, because no driver error source specific countermeasures
are developed here.

Figure 4: Errors entering the driving process

Perception errors may be introduced to a car-following model in a generic way. A
given model is assumed to be of the form:

𝑥̇ 𝑡( ) = 𝑣 𝑡( ) (4)

𝑣̇ 𝑡( ) = 𝑎 ∆𝑥(𝑡), ∆𝑣(𝑡)( ) (5)

where is the vehicle’s position and its speed at time . This form assumes𝑥 𝑡( ) 𝑣 𝑡( ) 𝑡
that the quantities determining the acceleration are the gap𝑎 𝑡( ) = 𝑎 ∆𝑥(𝑡), ∆𝑣(𝑡)( )

to the leading vehicle and the corresponding speed difference . This form∆𝑥(𝑡) ∆𝑣(𝑡)
is satisfied by a lot of commonly applied car-following models [23], but a
generalisation to other forms is not expected to be a difficult task.

Perception errors regarding the gap and regarding the speed differenceη
𝑥

∆𝑥 η
𝑣

∆𝑣

are used to define the perceived gap and the perceived speed difference as:∆𝑥
~

∆𝑣
~

∆𝑥
~

= ∆𝑥 + η
𝑥

(6)

∆𝑣
~

= 𝑣 + η
𝑣

(7)

The erroneous driving behaviour is then described by the equations:
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𝑥̇ 𝑡( ) = 𝑣 𝑡( ) (8)

𝑣̇ 𝑡( ) = 𝑎(∆𝑥
~

𝑡( ), ∆𝑣
~

𝑡( )) (9)

Both errors are derived from a scalar Ornstein-Uhlenbeck process withΗ
time-dependent noise intensity and time scale . The process H evolvesσ

𝑡
θ

𝑡
according to:

𝑑Η
𝑡

=− θ
𝑡

· Η
𝑡
⋅𝑑𝑡 + σ

𝑡
⋅𝑑𝑊

𝑡
(10)

The effective errors and are assumed to be proportional to the distance to theη
𝑥

η
𝑣

leading vehicle [24] and the main error term , that is:Η
𝑡

η
𝑥
(𝑡) = 𝑐

𝑥
· ∆𝑥(𝑡)⋅Η

𝑡
(11)

η
𝑣
(𝑡) = 𝑐

𝑣
· ∆𝑥(𝑡)⋅Η

𝑡
(12)

with constant coefficients and . The time scale and the noise drive of𝑐
𝑥

𝑐
𝑣

θ σ Η
follow the temporal changes of the awareness as follows:𝐴(𝑡)

θ
𝑡

= 𝑐
θ
⋅𝐴 𝑡( ) (13)

σ
𝑡

= 𝑐
σ

· 1 − 𝐴 𝑡( )( ) (14)

Roughly speaking, this implies that the higher the awareness, the faster any errors
decay and the smaller is their range.

As an additional generic mechanism for imperfect driving, perception specific action
points were considered [24], [25]. An action point is an instant where the𝑡
acceleration is changing its value according to the dynamical equation of the𝑎(𝑡)
given car-following model.

A change in a perceived quantity is only recognised if its magnitude surpasses a
certain threshold value. Accordingly, a corresponding change in action, here, a
change of acceleration, is only taken out when the currently perceived speed

difference deviates sufficiently from the last recognised value or the∆𝑣
~

𝑡( ) ∆𝑣
~

𝑟𝑒𝑐

currently perceived gap deviates from the value estimated based on the last∆𝑥
~

𝑡( )
recognised quantities. That is, instant is assumed an action point if either:𝑡

∆𝑥
~

𝑟𝑒𝑐
+ 𝑡 − 𝑡

𝑟𝑒𝑐( ) · ∆𝑣
~

𝑟𝑒𝑐
− ∆𝑥

~
𝑡( )|||

||| > θ
𝑥
,   𝑜𝑟 ∆𝑣

~
𝑟𝑒𝑐

− ∆𝑣
~

(𝑡)|||
||| > θ (15)
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Figures 5-7 compare data generated by SUMO’s standard model, the proposed
model and data from a real car-following episode of an approximate duration of 5.5
min. This episode was extracted from the simTD database1.

The experimental setup entailed a simulated car-following situation, where a
simulated, model-controlled following vehicle drove behind a simulated vehicle
following exactly the recorded speed profile of the real leading vehicle. Figure 5
shows the trajectory obtained from a Krauss model (the standard SUMO model), and
Figures 6-7 show trajectories of the model extended by the perception error
mechanism as described above for two different parametrisations.

If not stated otherwise, the following parameter values were used for the driver state
model of the following vehicle:

● , , , ,𝑐
θ
≡100 𝑐

σ
= 0. 2 𝑐

𝑥
= 0. 75 𝑐

𝑣
= 0. 15 θ

𝑥
= θ

𝑣
= 0. 1

The underlying Krauss model had the following configuration parameters:

● , , , and𝑎𝑐𝑐𝑒𝑙 = 1. 0 𝑑𝑒𝑐𝑒𝑙 = 3. 0 𝑠𝑖𝑔𝑚𝑎 = 0. 0 𝑡𝑎𝑢 = 0. 72

1 https://www.sit.fraunhofer.de/de/simtd/
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Figure 5: Comparison of SUMO’s standard model (Krauss) without driver state extensions and real car-following data.
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Figure 6: Comparison of a Krauss model with superimposed perception errors and real car-following data. The awareness is held constant with a
value of .𝐴 𝑡( )≡0. 1
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Figure 7: Comparison of a Krauss model with superimposed perception errors and real car-following data. Here, (other parametersθ
𝑥

= θ
𝑣

= 0. 02
as given above); constant awareness .𝐴 𝑡( )≡0. 1
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2 Parameterization

Table 1 depicts the parametrization of the latter models according to findings from
the H2020 TransAID project [26], [27], [28] and the requirements of the simulation
scenarios. One the other hand, the simulated behavior of conventional vehicles was
determined according to the default car-following and lane changing models of the
microscopic traffic simulator SUMO (i.e. Krauss car-following model, LC2013 lane
change model). Table 2 depicts the selected parametrization of the default models.

Table 1: Parametrization of car-following and ToC models for automated shuttles per
simulation scenario

Table 2: Parametrization of car-following and lane change models for conventional
vehicles

Factors Conventional Vehicles

Driver’s imperfection factor

Mean 0.2
Min 0.0

St. Dev 0.5
Max 1.0

Desired time headway (s)

Mean 0.6
Min 0.5

St. Dev 0.5
Max 1.6

Acceleration ability of vehicles (m/s2)

Mean 2.0
Min 1.0

St. Dev 1.0
Max 3.5

Deceleration ability of vehicles (m/s2) Mean 3.5

Simulation Suite: Simulating Automated Mobility

Factor
Variant 1

(Teleoperation + Low
speed)

Variant 2
(Teleoperation + High

speed)

Variant 3
(AV mode + Low

speed)
Driver’s imperfection
factor

0 0 0

Desired time headway
(s)

1.5 1.5 1.5

Deceleration ability of
vehicles (m/s2)

3.5 3.5 3.5

Acceleration ability of
vehicles (m/s2)

1.5 1.5 1.5

Emergency
deceleration (m/s2)

9.0 9.0 9.0

Vehicle's maximum
velocity (m/s)

6.95 13.8 6.95

Response Time (s) - - 90

Initial Awareness - - 0.87

Recovery Rate - - 0.015

MRM Deceleration
Rate (m/s2)

- - 3



Min 2.0
St. Dev 1.0

Max 4.5

Emergency deceleration (m/s2) 9.0

Willingness to accept gaps

Mean 1.2
Min 1.1

St. Dev 0.05
Max 1.3
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3 Transferability

For the present use case only microscopic simulations were conducted. Therefore,
the application of an up-scaling methodology is necessary in order to conduct any
transferability analysis of the results or any generalization with some degree of
success. These types of methodologies are described in the following.

Up-scaling from micro to macro simulation using PCUs

A methodology of up-scaling automated driving simulation outputs was conducted
by Tympakianaki et al. [29] and used in the LEVITATE EU project [30]. In this
methodology, the impacts of CAVs were assessed with respect to network
performance. In Figure 8, the considered steps of the up-scaling method are
illustrated.
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Figure 8: Aimsun upscaling approach by Tympakianaki et al. (2022) [29].

The considered steps of the up-scaling method are explained:
1. Firstly, the network capacity should be derived through the microscopic

simulation. By network capacity we define the maximum number of vehicles
exiting the simulation network between simulation time intervals (e.g. 2 minutes).
A suitable and easily transferable approach for observing the network capacities
is through the Macroscopic Fundamental Diagram (MFD). The MFD is the basis
of traffic flow theory and demonstrates a functional relationship between the
network characteristics, i.e., traffic flow (throughput), vehicle density and speed.

2. The second step includes a statistical analysis that identifies the effects on the
Passenger Car Units (PCUs)2 as a relative change of capacities. Based on the
microscopic simulation results, a fitted function (i.e. linear, polynomial, etc.) can
be used to derive the PCUs given the capacities obtained from the network
MFD. The PCUs are derived by the capacity ratio of conventional vehicles (CV)
and AVs using the following formula:

𝑃𝐶𝑈
𝐴𝑉

 =  𝑃𝐶𝑈
𝐶𝑉

*
𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝐶𝑉

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
𝐴𝑉

3. The last step is to provide the PCU relationship as an input to the Volume Delay
Functions (VDFs) of macroscopic models to forecast the potential macroscopic
implications on the network performance. The VDFs are functions that model
travel time among different parameters such as volume and capacity. For this
reason, the macroscopic models apply VDFs in order for travel time values to be
calculated. VDFs represent the relationship between flows and delays of each
road segment. A function defining travel time was developed by US Bureau
Public Roads [31] and is the following:

𝑡 =  𝑡
𝑓𝑓

(1 + 𝑎 ( 𝑣
𝑐 )

𝑏
)

where tff is the free-flow travel time, v/c is the volume-to-capacity ratio, and a, b
two adjustable parameters.

This methodological approach is essential as the small-scale simulated networks
would be up-scaled to city-level networks. In addition, the transferability of the
simulation outputs to other networks or/and regions would be applicable. If a
microscopic simulation model of a city is not available, the generalized PCU
functional relationship estimated from a different network could be used as input
into a travel demand model to forecast the macroscopic impacts. Furthermore, more
robust simulations with validated automated driving parameters (limiting the
assumptions related to the used parameters) could be executed and consequently,
more concrete results could be extracted.

2 Passenger Car Unit (PCU) measures the impact of a transport mode (passenger cars, heavy
vehicles, buses, etc.), as a function of vehicle dimensions and operating capabilities, on the
traffic flow efficiency compared to a standard unit of passenger car. Hence, a PCU factor of
1 is used as the unit for conventional cars.
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This methodology requires the combination of micro with macro simulations. The
main benefit of this methodology is that the results of microscopic simulation can be
evaluated if they are significantly similar to those derived from macroscopic
simulation (essentially to be up-scaled) in order to see if they can be generalized as
well as if they are transferable to different regions or cities. Therefore, the
fundamental outcomes expected via the application this methodology are up-scaled
results to city-level network and transferable simulation outputs to other
networks/regions.

Up-scaling from micro to macro simulation using extensions of driver models and
additional MFD specifications

Building upon the PCU method and recent advances in the literature with regards to
traffic flow theory and AVs, the MFD could be further exploited for upscaling
processes. One alternative is proposed by [32], where an MFD for AV traffic flows is
proposed along with macroscopic and microscopic measurement proposals. For
example, using vehicle travel time and distance travelled inside a simulation area, an
MFD can be created and up-scaled in the macro scale, in order to be fitted into a
macroscopic simulation. Furthermore, recently developed models such as the cell
transmission model (CTM) by [33], headway modelling as described in [34] and the
Flexible Traffic Stream Model (FTSM) by [35], that have been shown to be easily
transferrable from the micro to the macro scale could be used to obtain MFDs using
the methodology described in Lu et al. [36]. In [36], an MFD is drawn based on
measurements from SUMO inputs and a macroscopic speed-density function is
obtained through a Generalised Additive Model (GAM) regression for specific AV
penetration rates.

As it can be understood, apart from network capacity and the PCU method, even
with limited AV trajectories [32] or with the exploitation of headways [35] and speeds
of vehicles [36] the transferability of microscopic simulation outputs can be achieved
through the construction of MFDs to the macroscopic level and further impact
assessment results can be obtained.
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