
SHared automation Operating models for
Worldwide adoption

SHOW

Grant Agreement Number: 875530



1 Simulation Levels

Simulation levels are the different ways of representing traffic scenarios using
computer software and underlying mathematical models. They can vary in terms of
the level of detail, complexity, and realism that they capture. Some of the reasons
for using different simulation levels are to study different aspects of traffic systems,
such as vehicle dynamics, driver behaviour, traffic flow and emissions. Among the
factors that influence the choice of simulation level are the availability and quality of
input data, the computational resources and software tools and of course the
purpose and scope of the study (e.g. testing different scenarios and alternatives,
such as new infrastructure, policies, or technologies).

In Graz two simulation levels are used and combined to validate the pilot site. In the
area around the bus terminal vulnerable road users (VRUs), such as pedestrians,
cyclists, and partially animals, and their interactions with automated vehicles (AVs)
are of high interest to assess safety risks. Along the remaining track, individual
vehicles and their interactions with other road users and infrastructure (traffic lights)
are of interest. Here street level simulation is used to captures vehicle dynamics and
traffic flow.

The street level simulations are performed using SUMO. Here the focus is set on
traffic flow, congestion and round trip times. Although SUMO allows to define a
range – or rather visibility – of the vehicles sensors, they are not a major concern at
this abstraction level. They are assumed ideal, i.e. no occlusions from other vehicles
or the environment are taken into account. Moreover, the environment is also treated
ideally, i.e. all road users move lawfully along predefined lanes.

VRUs level simulation are partially covered using AWSIM. Here the sensors of the
vehicle are simulated based on a 3D model of the environment, with all known
effects and occlusions of objects. Furthermore, with AWSIM it is possible to use the
same algorithms for path planning and obstacle avoidance, that are used in the car,
directly in the simulation. Thus, the gap between simulation and reality is kept low.
Furthermore, objects can be moved along any trajectory and are not bound by any
lanes. On the other hand, the movement of other road users and the definition of
traffic is much more complicated on this level.

Thus, connecting simulation levels seems to be a good choice for combining the
advantages of both simulation tools in a meaningful way. For this purpose, the
following chapter presents the means by which SUMO can be coupled to other
simulators during runtime.

Simulation Suite: Connections between simulation levels 2



2 Possibilities for connections using SUMO

There are various possibilities for extending the traffic simulator SUMO. Since SUMO
is an open-source simulator, new features or existing ones can be improved by
modifying the source code directly. Another possibility is the usage of SUMO as a
library or a tool for other applications, such as self-driving vehicles, traffic
management, or logistics. The driver model in SUMO is implemented as a
car-following model that determines the acceleration of a vehicle based on its own
speed, the speed and distance of the leader vehicle, and other factors. SUMO
provides several built-in car-following models, such as Krauss, IDM, EIDM, etc. It is
possible to choose one of them as a base model or create a new one from scratch.

TraCI [1] (Traffic Control Interface) allows the access and manipulation of a running
SUMO simulation from an external script or application. Various programming
languages, such as Matlab, Python, Java, or C++ can be used for TraCI. Unlike the
method before, using TraCI does not require the compilation of the SUMO itself.
Once connected, TraCI allows the retrieval of information about simulated objects,
such as vehicles, pedestrians, lanes, traffic lights, etc. In the opposite direction, the
behaviour and state of simulated objects, such as speed, route, colour, or traffic light
signals can be controlled. Furthermore, the simulation control flow, such as
advancing steps, loading scenarios, or stopping the simulation, can be influenced
via TraCI.

In this document we’ll discuss the TraCI interface implementation for C++. The basic
principles and even the names of most functions should be transferrable to other
programming languages. Of course, the syntax has to be adopted when using
another supported programming language. In the annex the complete source code
for the test application is given, which requires Microsoft Visual Studio Community
Edition 2017 or newer running on Windows 10.

2.1 Preparation of SUMO simulation

In order to make a SUMO simulation available for TraCI, a communication port must
be defined in the .sumocfg file. Theoretically any free TCP/IP port can be used.
However, it is recommended to select a port above 1024, because some operating
systems restrict the usage of ports below 1024. As soon as this change has been
made, SUMO waits after loading the project for a TraCI client to attach. Without the
interaction with a TraCI client, the projects seems to be frozen in graphical frontend
of SUMO. The following lines need to be added to sumocfg:

<traci_server>
<remote-port value="12345"/>
<num-clients type="1"/>

</traci_server>

2.2 Connect to SUMO Simulation

Basically, a TCP/IP connection to SUMO must be established to start the simulation.
This could be done via direct socket programming and sending data packets in

Simulation Suite: Connections between simulation levels 3



TraCI format manually. However, a better and the preferred method, is to use the
TraCI library. When using the library, the connection is established with a single
command:

client.connect("localhost", 12345);

The above command connects to SUMO running on the local machine using port
12345. Problems and errors during communication are handled by exception
handlers.

In general, to use TraCI commands it is necessary to encapsulate the functionality in
a TraCIAPI derived class:

class Client : public TraCIAPI

2.3 Initialization of TraCI objects

Normally, you want to set various variables and possibly place vehicles manually
before starting the simulation. Such activities should happen immediately after the
connection is established. For example, a vehicle can be added using the following
line of code:

vehicle.add("shuttle", "show1", "shuttle", t0, "0", "base", v0);

This creates a new vehicle with the name ‘shuttle’ from vehicle type ‘shuttle’ which
is following the predefined route ‘show1’. It spawns at simulation time ‘t0’ with speed
‘v0’ on any available lane immediately at the beginning (‘base’) of the route. Of
course, the vehicle type ‘shuttle’ and the route ‘show1’ must be defined before,
either in the XML configuration file or as TraCI command.

2.4 Synchronization with TraCI

When controlling the SUMO simulation via TraCI, the question of synchronization
arises. In the simple case, the timing is determined via the external client, and the
simulation is stopped as soon as the client performs computations. Such a behavior
can be realized programmatically in the following way:

client.simulationStep(0);
client.initializeVehicle();

for (int i = 1; i < N; i++)
{

client.simulationStep(i*STEP_SIZE);
if (client.updateVehicleStatus(i) == false)
break;

}
client.close();

With the first line the simulation time is initialized. Next follows the initialization and
configuration of relevant vehicles and other SUMO objects. Within the loop, the
simulation time is incremented step by step and for every time step the vehicle
update function is called. The simulation stops either after ‘N’ time steps or if the
update function requests for some reason the simulation to stop.

Simulation Suite: Connections between simulation levels 4



2.5 Retrieve vehicle data via TraCI

During the simulation, a large number of variables can be read out for each SUMO
object. The SUMO objects are typically addressed using their id – which is basically
a string. For example, the current speed of our ‘shuttle’ can be obtained with the
following command:

v = vehicle.getSpeed("shuttle");

Among others, the following metrics are available: position, speed, acceleration,
angle, road id, lane id, distance, energy consumption, CO2 emissions and color. As
simple as these commands may seem, they have a big disadvantage. For every
query a request is sent via TCP to SUMO and the response is waited for. When
several status variables of several vehicles are to be read out, the communication
overhead grows quite high and, thus, the simulation runs slowly. In this case it is
better to choose subscriptions. Instead of sending each request individually, a block
with the subscribed data is automatically transmitted to the client after every
simulation time step. However, it sacrifices flexibility, because the subscription must
be set up in advance – either during the initialization phase, but at the latest before
the time step where the data is needed.

The syntax for subscriptions requires accustoming and the error-proneness is rather
high, but the performance improvement is substantial. The subscription command
itself is quite simple:

vehicle.subscribe("shuttle", m_vars, 0.0, 650.0);

We would like to get for the time span 0 … 650s from the vehicle ‘shuttle’ the list of
measures defined in ‘m_vars’. The vector ’m_vars‘ keeps a list of quantities that
should be reported. For example, to get position, speed, acceleration, road and lane
of the vehicle, m_vars = {0x56, 0x40, 0x72, 0x52, 0x51}. These numbers are part of
the SUMO documentation. Beware, an exception is thrown at runtime if invalid
identification numbers are specified. To actually get the values transmitted within a
subscription, the following statement is needed:

TraCIResults sub = vehicle.getSubscriptionResults("shuttle");

The individual measurements can then be accessed like the following. As before, the
use of wrong identifiers leads to an exception during runtime:

v0 = ((TraCIDouble*)(sub.at(0x40).get()))->value;

As mentioned in the previous chapter, the simulation of vehicle is not really
supported by SUMO. However, the vehicles surrounding (called context), with a
specified detection range, can be subscribed like the vehicle parameters would be
subscribed:

vehicle.subscribeContext("shuttle", 0xa4, 100, m_vars, 0, 650);

With the statement above, the surrounding of the vehicle in a range of ±100m is

reported after every simulation step. In order to retrieve the list of vehicles, the
following instruction must be executed:

Simulation Suite: Connections between simulation levels 5



SubscriptionResults c =
vehicle.getContextSubscriptionResults("shuttle");

For further details, please refer to the example code in the annex or download the
TraCI example project.

2.6 Influence selected vehicle via TraCI

Just as data can be obtained from vehicles during simulation, TraCI also allows
changing various states of a vehicle. This includes things like setting the desired
vehicle speed, changing to the desired driving lane, changing of the vehicle route,
inserting stops, selecting a vehicle color and much more. For example, to change
the color of a given vehicle the following statement can be used:

vehicle.setColor("shuttle", shuttlecol);

It should be mentioned here that these values are guiding values in the default
vehicle configuration. For example, the vehicle may drive slower than the desired
speed, according to the safety rules of the car-follow model. Likewise, a lane
change can be requested via TraCI. If it is safe to execute, the lane change is
actually performed. If the requested lane change is not possible due to traffic, it is
simply ignored by SUMO.

Having said that, these safety mechanisms can be overruled programmatically.
Warnings, emergency braking maneuvers and even collisions can occur when
deactivating the safety checks. This way the intelligence – and lack thereof – of
autonomous vehicles could be implemented and tested partially within SUMO. To lift
safety checks for a given vehicle, these commands must be issued:

vehicle.setLaneChangeMode("shuttle", 0b000100000000);
vehicle.setSpeedMode("shuttle", 32);

Simulation Suite: Connections between simulation levels 6



3 Realization for SHOW pilot site

As can be seen in Figure 1, the Graz Pilot Site has been split in two simulation
domains: the bus terminal area (red) and the track to and through the shopping
center (green). The green part is actually modelled and covered with SUMO while
Autoware simulation is responsible for the red part.

Figure 1: Spatial split of simulation domains

At the predefined handover points both simulations are coupled spatially. This
means, the current vehicle state (speed, acceleration) at this location is taken from
one simulator and fed into the other simulator and vice versa. This can be done
rather easily with the TraCI commands presented in chapter 2.

More precisely, SUMO prepares a base traffic along the major roads in this scene.
After a delay of 60 seconds the base traffic has settled. Then the shuttle is spawned
with the speed and acceleration provided by Autoware simulation. Since starting
and handling the Autoware simulation environment is not trivial, this handover
process is done manually. Basically, one TraCI command is needed on the SUMO
side for this type of coupling:

vehicle.add("shuttle", "show1", "shuttle", t0, "0", "base", v0);

The route ‘show1’ is a list of road sections defining the green track in Figure 1. The
vehicle type ‘shuttle’ determines the characteristics and vehicle dynamics of the
autonomous shuttle. The shuttle spawns at the start of the track (‘base’) with a delay
of t0 = 60 seconds with the speed v0, reported from Autoware.

Simulation Suite: Connections between simulation levels 7



Simulation Suite: Connections between simulation levels 8



References

[1] (DLR), German Aerospace Center, „Introduction to TraCI,“ 30 3 2023. [Online].
Available: https://sumo.dlr.de/docs/TraCI.html.

Simulation Suite: Connections between simulation levels 9



Appendix

A small example program is presented to show how TraCI can be used to create a
vehicle in SUMO, read out the data during the simulation and influence its behaviour.
Besides, it is shown how to start SUMO automatically and how the connection to
SUMO is actually established. This program is intended for the use of SUMO under
Windows. Visual Studio Community Edition 2017 was used as IDE.

#include <Windows.h>
#include <iostream>
#include <stdio.h>
#include <conio.h>
#include <utils/traci/TraCIAPI.h>
#include "parameter.h"

class Client : public TraCIAPI
{

private:
FILE *m_csvfile;
FILE *m_logfile;
std::vector<int> m_vars;

double m_a_old;
int m_a_count;

public:
Client()
{

//Subscribe following data from shuttle vehicle
m_vars.push_back(0x56); //lane position
m_vars.push_back(0x40); //speed
m_vars.push_back(0x72); //acceleration
m_vars.push_back(0x52); //lane-idx
m_vars.push_back(0x51); //lane-id

m_csvfile = fopen("D:\\Projects\\Show\\vehicle.csv", "wt");
if (m_csvfile)
{

fprintf(m_csvfile, "PosX;PosY;v;a;Road\n");
}

m_logfile = fopen("D:\\Projects\\Show\\kpi.log", "wt");
{

fprintf(m_logfile, "t;v;a\n");
}

m_a_old = 0.0;
m_a_count = 0;

};

~Client()
{

fclose(m_csvfile);
fclose(m_logfile);

};

void initializeVehicle()
{

libsumo::TraCIColor col, egocol;
std::vector<std::string> myroute;
char st[32];
char sv[32];

Simulation Suite: Connections between simulation levels 10



//need to have a string for the start time of the shuttle
sprintf(st, "%4.2f", (float)EGO_START_T);
sprintf(sv, "%4.2f", (float)EGO_START_V);

//Create my own car = the show shuttle vehicle
vehicle.add("shuttle", "show1", "shuttle", st, "0", "base", sv);

//Colour the new shuttle red
egocol.r = 255;
egocol.g = 0;
egocol.b = 0;
egocol.a = 255;
vehicle.setColor("shuttle", egocol);

//Subscriptions must be set up before the simulation actually runs
vehicle.subscribe("shuttle", m_vars, 0.0, 650.0);

//Substribe context (= surroundings) +/- 200m of ego vehicle
vehicle.subscribeContext("shuttle", 0xa4, 200.0, m_vars, 0.0, 650.0);
vehicle.addSubscriptionFilterLateralDistance(200.0, 200.0, 50.0);

//Example how to influence the vehicle "normal.0" and
//change color to pink
col.r = 255;
col.g = 128;
col.b = 255;
col.a = 255;
vehicle.setColor("normal.0", col);
vehicle.setSpeed("normal.0", 70.0 / 3.6);
vehicle.changeSublane("normal.0", 4.0);
vehicle.setLaneChangeMode("normal.0", 0);
vehicle.moveTo("normal.0", "entry_1", 5.0);

}

bool updateVehicleStatus(int step)
{

double v, a, dist;
int laneidx;
std::string lane;
std::string road;
std::string route;
libsumo::TraCIPosition pos;
bool ego_exists = false;

//Get list of vehicles from running simulation
std::vector<std::string> idlist = vehicle.getIDList();

//See if the ego vehicle is among the vehicles in the list
for (const std::string& s : idlist)
{

if (s.compare("shuttle") == 0)
{

ego_exists = true;
break;

}
}

//If the shuttle completes its trip then force end of simulation
if (step > EGO_START_T / STEP_SIZE && ego_exists == false)

return false;

//If the shuttle has not yet started we can't collect its data
if (step <= EGO_START_T / STEP_SIZE)

return true;

Simulation Suite: Connections between simulation levels 11



//Get information from particular vehicle
v = vehicle.getSpeed("shuttle");
lane = vehicle.getLaneID("shuttle");
road = vehicle.getRoadID("shuttle");
dist = vehicle.getDistance("shuttle");
pos = vehicle.getPosition("shuttle");
a = vehicle.getAcceleration("shuttle");
laneidx = vehicle.getLaneIndex("shuttle");

//Basically the same as above, but better performance and less
//communication overhead. On the other hand, the subscription
//must be registered before
libsumo::TraCIResults const &test =

vehicle.getSubscriptionResults("shuttle");

//Get the surrounding vehicles (and their data) of the ego vehicle
libsumo::SubscriptionResults const &ctx =

vehicle.getContextSubscriptionResults("shuttle");

//And add these vehicles to our list of vehicles
for (std::pair<std::string, libsumo::TraCIResults> const& cveh : ctx)
{

std::string const &cname = cveh.first;
libsumo::TraCIResults const &cvalues = cveh.second;

//ToDo: use surrounding vehicle ids and values
}

//Debug output on screen
printf("pos=(%6.1lf/%6.1lf),v=%4.2lf,a=%3.2lf\n",pos.x,pos.y,v,a);

//Write current values to CSV file
if (m_csvfile)
{

fprintf(m_csvfile,"%6.1lf;%6.1lf;%4.2lf;%4.3lf;%s\n",
pos.x, pos.y, v, a, road.c_str());

}

//Detect KPI relevant braking events
if (m_logfile)
{

//Find strong decelleration events
if (a < STRONG_BRAKING_DECCEL &&

!(m_a_old < STRONG_BRAKING_DECCEL) &&
v > 2.0)

{
fprintf(m_logfile, "%5.1lf;%4.2f;%4.3lf\n",

STEP_SIZE*step, v, a);
m_a_count++;

}
m_a_old = a;

}

//Just for testing:
if (step == 1)
{

std::vector<std::string> route = vehicle.getRoute("shuttle");
printf("route = \n");
for (std::string section : route)
{

printf(" %s\n", section.c_str());
}

}
return true;

}

Simulation Suite: Connections between simulation levels 12



};

void startup(const char* lpApplicationName, const char *parameters)
{

// additional information
STARTUPINFOA si;
PROCESS_INFORMATION pi;
char cmdline[2048];

// set the size of the structures
memset(&si, 0, sizeof(si));
si.cb = sizeof(si);
memset(&pi, 0, sizeof(pi));

strcpy(cmdline, lpApplicationName);
strcat(cmdline, " ");
strcat(cmdline, parameters);

// start the program up
CreateProcessA
(

lpApplicationName, // the path
cmdline, // Command line
NULL, // Process handle not inheritable
NULL, // Thread handle not inheritable
FALSE, // Set handle inheritance to FALSE
CREATE_NEW_CONSOLE, // Opens file in a separate console
NULL, // Use parent's environment block
NULL, // Use parent's starting directory
&si, // Pointer to STARTUPINFO structure
&pi // Pointer to PROCESS_INFORMATION structure

);

// Close process and thread handles.
CloseHandle(pi.hProcess);
CloseHandle(pi.hThread);

}

int main(int argc, char* argv[])
{

Client client;
int i, res;
bool ret;
bool remotecontrol;

//Start Sumo with project configuration file
printf("Starting SUMO now\n");
startup("D:\\Projects\\sumo-1.7.0\\bin\\sumo-gui.exe",

"--start --quit-on-end -c D:\\Projects\\Show\\osm.sumocfg");
printf("SUMO started\n");

//Wait until SUMO is ready to accept a TCP connection
Sleep(1500);

try
{

printf("Connecting to SUMO\n");
client.connect("localhost", 12345);
printf("Client connected.\n");
std::cout << "time in s: " << client.simulation.getTime() << "\n";

client.simulationStep(0);
client.initializeVehicle();

Simulation Suite: Connections between simulation levels 13



for (i = 1; i < 6000; i++)
{

client.simulationStep(i*STEP_SIZE);
printf("step %d, time is %lf s\n",

1+i, client.simulation.getTime());

ret = client.updateVehicleStatus(i);

if (ret == false)
break;

}

client.close();
}
catch (tcpip::SocketException e)
{

printf("SUMO communication error occurred!\n");
}

return 0;
}

Simulation Suite: Connections between simulation levels 14


